Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
J Family Med Prim Care ; 13(2): 748-757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38605755

RESUMO

Introduction: Malnutrition is very common in India and black wheat might be an acceptable solution to this problem. The aim of the study was to assess acceptability of black wheat flour products and factors affecting it among Anganwadi beneficiaries and workers. Materials and Methods: This was a mixed-method prospective observational study. All the family members enrolled for supplementary nutrition and Anganwadi workers/helpers of three randomly selected Anganwadi centers were taken in the study. For qualitative data, in-depth interview was done, and for quantitative data, 9-point hedonic scale was administered. Braun and Clarke's six-phase data analysis framework was used for qualitative data. Results: A total of 16 pregnant females, 14 lactating females, 16 children, 2 Anganwadi workers, and 3 Anganwadi helpers participated in the study. Thematic analysis of the data revealed five significant themes. It included characteristics of black wheat flour, the process of making the product (experience of making the product), family acceptability, availability, and hygiene. Participants expressed that the black color appearance is one of the negative influencers in the acceptability of black wheat flour. Most of the participants liked the taste as well as the texture. However, kneading, rolling, and puffing were more challenging than traditional wheat flour. On the hedonic scale, the mean rank of acceptability is lowest for color (3.03), followed by puffing (3.49) and highest for texture (4.87) and taste (4.60). Conclusion: Our study results revealed that black wheat is acceptable to the Anganwadi beneficiaries and workers.

2.
Bioresour Bioprocess ; 11(1): 22, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38647993

RESUMO

Amyloid fibrils derived from different proteins have been proved as a promising material for adsorption of various pollutants from wastewater, which showed advantages of low cost and eco-friendliness. However, most of the amyloid fibrils derived from animal-based proteins with high environmental footprint, while more sustainable amyloid fibrils derived from plant materials are desirable. In this study, a plant-derived amyloid fibril was extracted from the commonly used wheat flour with a simple and scalable protein purification and fibrillization process. Interestingly, the amyloid fibrils showed good adsorption capacity towards typical organic dyes (Eosin Y (EY) and Congo red (CR)) from contaminated water. Adsorption kinetic analysis indicated the adsorption process to EY or CR by wheat flour amyloid well fitted with a pseudo-second-order model. The adsorption also followed a Langmuir isothermal model with adsorption capacities of 333 mg/g and 138 mg/g towards CR and EY, respectively. This work demonstrated the feasibility to utilize the plant-based amyloid fibril for organic dyes removal from contaminated water, which provided an affordable, sustainable and scalable tool for organic dyes removal from wastewater.

3.
Materials (Basel) ; 17(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473683

RESUMO

In this study, we conducted the first plasticization of wheat flour (WF) with the addition of choline chloride:urea (1:5 molar ratio) eutectic mixture as a plasticizer and spent coffee grounds (cf) as a filler. Thermoplastic wheat flour (TPWF) films were obtained via twin-screw extrusion and then thermocompression. Their physicochemical characterization included mechanical tests, dynamic mechanical thermal analysis (DMTA), and sorption tests. XRD analysis revealed that the eutectic plasticizer led to a high degree of WF amorphization, which affected the physicochemical properties of TPWF. The results indicated that it was easy for the TPWF biocomposites to undergo thermocompression even with a high amount of the filler (20 pph per flour). The addition of the cf into TPWF led to an increase in tensile strength and a decrease in the swelling degree of the biocomposites. Biodegradation tests in soil revealed that the materials wholly degraded within 11 weeks. Moreover, a study of cultivated plants indicated that the biocomposites did not exhibit a toxic influence on the model rowing plant.

4.
Int J Biol Macromol ; 264(Pt 1): 130561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431011

RESUMO

Beta-glucans possess the ability of retarding starch retrogradation. However, ß-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of ß-glucans related to the feature still remains unclear. In the study, the ß-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each ß-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower Mw aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two ß-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher Mw exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of ß-glucan (Mw and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity ß-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.


Assuntos
Amido , beta-Glucanas , Amido/química , beta-Glucanas/química , Farinha , Triticum/química , Viscosidade
5.
Foods ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540887

RESUMO

Deoxynivalenol (DON) is a harmful fungal toxin, and its contamination in wheat flour poses a food safety concern globally. This study proposes the combination of fluorescence hyperspectral imaging (FHSI) and qualitative discrimination methods for the detection of excessive DON content in wheat flour. Wheat flour samples were prepared with varying DON concentrations through the addition of trace amounts of DON using the wet mixing method for fluorescence hyperspectral image collection. SG smoothing and normalization algorithms were applied for original spectra preprocessing. Feature band selection was carried out by applying the successive projection algorithm (SPA), uninformative variable elimination (UVE), competitive adaptive reweighted sampling (CARS), and the random frog algorithm on the fluorescence spectrum. Random forest (RF) and support vector machine (SVM) classification models were utilized to identify wheat flour samples with DON concentrations higher than 1 mg/kg. The results indicate that the SG-CARS-RF and SG-CARS-SVM models showed better performance than other models, achieving the highest recall rate of 98.95% and the highest accuracy of 97.78%, respectively. Additionally, the ROC curves demonstrated higher robustness on the RF algorithm. Deep learning algorithms were also applied to identify the samples that exceeded safety standards, and the convolutional neural network (CNN) model achieved a recognition accuracy rate of 97.78% for the test set. In conclusion, this study demonstrates the feasibility and potential of the FHSI technique in detecting DON infection in wheat flour.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124112, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518439

RESUMO

Wheat flour is a ubiquitous food ingredient, yet discerning its various types can prove challenging. A practical approach for identifying wheat flour types involves analyzing one-dimensional near-infrared spectroscopy (NIRS) data. This paper introduces an innovative method for wheat flour recognition, combining deep learning (DL) with Two-dimensional correlation spectrum (2DCOS). In this investigation, 316 samples from four distinct types of wheat flour were collected using a near-infrared (NIR) spectrometer, and the raw spectra of each sample underwent preprocessing employing diverse methods. The discrete generalized 2DCOS algorithm was applied to generate 3792 2DCOS images from the preprocessed spectral data. We trained a deep learning model tailored for flour 2DCOS images - EfficientNet. Ultimately, this DL model achieved 100% accuracy in identifying wheat flour within the test set. The findings demonstrate the viability of directly transforming spectra into two-dimensional images for species recognition using 2DCOS and DL. Compared to the traditional stoichiometric method Partial Least Squares Discriminant Analysis (PLS_DA), machine learning methods Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), and deep learning methods one-dimensional convolutional neural network (1DCNN) and residual neural network (ResNet), the model proposed in this paper is better suited for wheat flour identification, boasting the highest accuracy. This study offers a fresh perspective on wheat flour type identification and successfully integrates the latest advancements in deep learning with 2DCOS for spectral type identification. Furthermore, this approach can be extended to the spectral identification of other products, presenting a novel avenue for future research in the field.


Assuntos
Aprendizado Profundo , Farinha , Farinha/análise , Triticum/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Análise dos Mínimos Quadrados
7.
Carbohydr Polym ; 334: 122029, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553229

RESUMO

To investigate the incubation conditions encountered by enzymes in cereal-based product transformation processes, this study aims to provide comprehensive information on the effect of low (18 %) to high (72 %) solid loading on the behavior of bacterial and fungal xylanases towards wheat grain fractions, i.e. white flour, ground whole grain and bran. Both enzymes are effective from 30 % water content. A water content of 50 % appears as the threshold for optimal arabinoxylan solubilisation. The specificity of enzymes was influenced by low hydration conditions, particularly in wheat bran, which contains arabinoxylan with diverse structures. Especially the bacterial xylanase became more tolerant to arabinose substitution as the water content decreased. Time Domain-NMR measurements revealed four water mobility domains in all the fractions. The water populations corresponding to 7.5 nm to 15 nm pores were found to be the most restrictive for enzyme activity. These results define the water content limits for the optimal xylanase action in cereal products.


Assuntos
Endo-1,4-beta-Xilanases , Xilanos , Endo-1,4-beta-Xilanases/química , Xilanos/química , Fibras na Dieta/análise , Farinha , Espectroscopia de Ressonância Magnética , Grão Comestível/química , Água
8.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338455

RESUMO

The house cricket (Acheta domesticus L.) is one of four edible insect species introduced to the EU market as a novel food and alternative protein source. Innovative products, such as cricket flour, are increasingly appearing on supermarket shelves and can offer an alternative to traditional cereals, while providing the body with many valuable nutrients of comparable quality to those found in meat and fish. The aim of this study was to investigate the possibility of using cricket powder as a substitute for wheat flour in the production of bread. The physicochemical properties of cricket powder were evaluated in comparison to wheat flour. As a result of technological studies, bread compositions with 5%, 10% and 15% replacements of wheat flour by cricket powder were designed and their quality characteristics (physicochemical, sensory and microbiological) were evaluated. Cricket powder was characterised by a higher protein (63% vs. 13.5%) and fat (16.3% vs. 1.16%) content and a lower carbohydrate (9.8% vs. 66%) and fibre (7.8% vs. 9.5%) content as compared to wheat flour. The tested preparations had a similar pH (6.9 and 6.8, respectively, for cricket powder and flour) and fat absorption capacity (0.14 vs. 0.27 g oil/g powder, respectively, for cricket powder and flour) but different water holding capacities and completely different colour parameters. All breads had good microbiological quality after baking and during 7 days of storage. In instrumental tests, the 10 and 15% replacements of wheat flour by cricket powder affected the darker colour of the breads and caused a significant increase in the hardness of the breads. The research has shown that the optimal level of replacement, which does not significantly affect the physiochemical and sensory characteristics, is 5% cricket powder in the bread recipe. Considering the results obtained and the fact that insects provide a sufficient supply of energy and protein in the human diet, are a source of fibre, vitamins and micronutrients, and have a high content of monounsaturated and polyunsaturated fatty acids, the suitability of cricket powder for protein enrichment of bakery products is confirmed.


Assuntos
Críquete , Gryllidae , Animais , Humanos , Pão , Triticum/química , Pós , Farinha
9.
Food Chem ; 445: 138775, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401315

RESUMO

To overcome the problem that takeaway noodles possessed poor immersion resistance, in this study noodles were prepared from post-ripened wheat flour, and changes in textural properties, protein components, and water status of noodles were determined. The firmness and tensile distance of noodles were gradually increased by 7.40%-35.88% when wheat flour was post-ripened for 20-40 d. Afterwards, noodle textural qualities were slightly decreased. Compared with control groups, contents of glutenin macropolymer (GMP) and disulfide bonds were significantly (p<0.05) increased and protein network was also more compact, whereas the Glutenin/Gliadin ratio and free sulfhydryl groups content were significantly (p<0.05) reduced. Contents of sodium dodecyl sulfate extractable protein (SDSEP) were reduced by 3.22%-6.23%. Meanwhile, the decrease in A23 indicated that wheat flour post-ripening limited water-absorbing capacity of noodles during immersion. In conclusion, wheat flour post-ripening promoted the immersion resistance of noodles by inducing protein cross-linking, and the best post-ripening time was 20-40 d.


Assuntos
Farinha , Imersão , Farinha/análise , Triticum/química , Gliadina , Água , Culinária
10.
Food Chem (Oxf) ; 8: 100195, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38327512

RESUMO

This study investigated the effects of wheat lipoxygenase isozyme III (LOX III) and its truncated form, Mini-LOX III, on flour dough properties using yeast-expressed recombinant enzymes and hypothesized their potential to enhance cereal-based food quality. These enzymes actively catalyze linoleic acid, which is crucial for dough formation. The addition of recombinant LOX III and Mini-LOX III to wheat flour significantly changed glutenin protein composition. An increase in the amount of soluble glutenin and a shift in polypeptide distribution were observed, marked by a decrease in the high-molecular-weight regions and an increase in the low-molecular-weight regions. This result reflects the role of enzymes in altering the hydrophobicity of glutenin surfaces, thereby affecting the protein solubility and dough properties. Thus, recombinant LOX III and Mini-LOX III offer new avenues for enhancing the texture and quality of cereal-based foods, providing valuable insights into the role of wheat LOX in flour processing and its potential industrial applications.

11.
J Food Sci Technol ; 61(3): 491-502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327866

RESUMO

In the current study, partially defatted coconut flour (PDCF) was prepared using deoiled cake obtained after virgin coconut oil processing. The proximate analysis of PDCF revealed the presence of 5.21% moisture, 14.03% fat, 21.34% protein, 46.39% fiber and 3.27% ash, along with prominent functional properties. Herein, muffins were prepared by incorporation of PDCF as a replacement of refined wheat flour (RWF) at 0, 25, 50, 75 and 100% flour blend. Significant changes in batter rheology were observed after 25 to 100% replacement of RWF with PDCF, which indicated a decrease in peak viscosity and final viscosity by 65.05 to 83.59% and 61.57 to 85.17% respectively, an increase in specific gravity of batter by 0.857-0.929 g/L. The prepared muffins had significant variations in colour of crust and crumb regions as represented by changes in L*a*b*, Hue angle (h°) and Chroma (C) and textural properties such as hardness, springiness, guminess, cohesiveness, chewiness, and resilience. Incorporation of 50% PDCF significantly (P < 0.05) increased the overall acceptability of the muffins (with a maximum score of 8.5), with a fiber content of 5.53 ± 0.23% and protein content of 7.57 ± 0.30%. Storage stability studies performed at 25 ± 2 °C for seven days revealed an increase in microbial count, and reduction in textural properties but both to be in acceptable regime. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05857-2.

12.
Food Chem ; 443: 138566, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301548

RESUMO

The formation of volatile compounds affects the flavor of processed wheat flour products. Herein, the effects of the composition of fatty acid hydroperoxides and the differences in the antioxidant contents among wheat cultivars on the flavor of wheat flour products were clarified. For this purpose, the volatile compounds in wheat flour doughs, LOX activity, fatty acid hydroperoxide composition from fractionated LOX, and antioxidant content were analyzed. Norin61 exhibited a high LOX activity and 9-fatty acid hydroperoxide production. Unsaturated aldehydes derived from 9-fatty acid hydroperoxides contributed significantly to the volatile compound profile of Norin61. Moreover, the lowest lutein content was observed in Norin61 among the analyzed cultivars. The LOX activity and composition of the fatty acid hydroperoxides produced by LOX affected the production of volatile compounds, whereas carotenoids had a suppressive effect. This study provides useful information for product design with the desired flavor for developing various processed wheat flour products.


Assuntos
Antioxidantes , Peróxidos Lipídicos , Triticum , Farinha , Lipoxigenase
13.
Gels ; 10(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38391435

RESUMO

In order to prepare bioactive edible gel films with enhanced properties, the feasibility of using wheat flour as a raw material with glucose added at several concentrations was studied in this investigation. Films were prepared with glucose concentrations of 0.5, 0.7 and 1 g/g of flour and characterized for their physicochemical properties, including water content, solubility, degree of swelling, chemical structure by FT-IR (ATR) spectroscopy, morphology by SEM microscopy, thermal properties by DSC, gas and water vapor permeability and antioxidant activity. Biodegradation studies were also carried out in soil for 27 days and evaluated by weight loss measurements. It was found that the gel film with the higher glucose concentration exhibits a homogeneous and continuous structure with no cracks and no fragility, accompanied by an increased thickness and solubility and a decreased degree of swelling compared to those with lower concentrations. The chemical structure of all films was verified. Moreover, the increase in glucose content leads to better gas barrier properties with lower oxygen, CO2 and water vapor transmission rates and increased water vapor permeability. A slightly elevated melting temperature was observed in the films with higher glucose content. Higher antioxidant activity was also associated with higher percentage of glucose. Finally, the biodegradation of the films ranged from 13 to nearly 70%. Therefore, it can be concluded that the addition of glucose to wheat flour in concentration up to 1 g/g could result in edible gel films with excellent properties to be used in food packaging applications.

14.
Food Chem ; 441: 138363, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38199100

RESUMO

The optimization screening methods for total ergot alkaloids in wheat extracts involve transforming them into a single compound, which is then analyzed via high-resolution Orbitrap mass spectrometry (Orbitrap MS). Orbitrap MS provides highly sensitive and accurate mass measurements, enhancing the selectivity and sensitivity of the analysis. Various hydrolysis and reduction methods have been investigated, and the use of superhydrides has emerged as the most effective method for transforming ergopeptine alkaloids. This study also focused on the epimerization of ergot alkaloids, particularly the differences between R- and S-epimers and their impact on the mass spectra. We validated our method by assessing the linearity, sensitivity, recovery, matrix effects, repeatability, and stability. The limits of detection and quantitation were set at 0.43 and 1.30 µg LSA/kg wheat, respectively. The proposed method offers a robust analytical approach for screening and quantifying total ergot alkaloids in wheat samples, addressing important concerns about their presence in food and feed.


Assuntos
Alcaloides de Claviceps , Alcaloides de Claviceps/análise , Alcaloides de Claviceps/química , Farinha/análise , Triticum/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Contaminação de Alimentos/análise
15.
J Sci Food Agric ; 104(7): 4070-4082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294231

RESUMO

BACKGROUND: In wheat-derived bakery products, the quantity of free asparagine (fAsn) has been identified as a key factor in acrylamide (AA) formation. Based on this assumption, four varieties of common wheat (Triticum aestivum L.), Stromboli, Montecarlo, Sothys and Cosmic, selected for their different fAsn content inside the grain, were studied to evaluate their potential in the production of pizza with reduced AA levels. To this purpose, wholemeal and refined flours were obtained from each variety. RESULTS: The fAsn content ranged from 0.25 to 3.30 mmol kg-1, with higher values for wholemeal flours which also showed greater amount of ash, fibre and damaged starch than refined wheat flours. All types of flours were separately used to produce wood oven baked pizza base, according to the Traditional Speciality Guaranteed EU Regulation (97/2010). AA reduction in the range 47-68% was found for all the selected wheat cultivars, compared with a commercial flour, with significantly lower values registered when refined flour was used. Moreover, refined leavened dough samples showed decreased levels of fAsn and reducing sugars due to the fermentation activity of yeasts. Furthermore, it was confirmed that pizza made with wholemeal flours exhibited lower rapidly digestible starch (RDS) and rapidly available glucose (RAG) values compared to that prepared with the refined flour. CONCLUSION: This study clearly shows that a reduced asparagine content in wheat flour is a key factor in the mitigation of AA formation in pizza base. Unfortunately, at the same time, it is highlighted how it is necessary to sacrifice the beneficial effects of fibre intake, such as lowering the glycaemic index, in order to reduce AA. © 2024 Society of Chemical Industry.


Assuntos
Asparagina , Farinha , Asparagina/química , Amido , Triticum/química , Acrilamida/química , Madeira , Pão
16.
Food Res Int ; 176: 113723, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163681

RESUMO

The cultivation and processing of wheat render it susceptible to microbial contamination from varied sources. Hence, pathogens such as Salmonella can contaminate wheat grains, which poses a food safety risk in wheat-based products. This risk is displayed by the incidence of foodborne illness outbreaks linked to Salmonella-contaminated wheat flour and flour-based products. The purpose of this study was to assess the effectiveness of combining acidic water and heat treatment in reducing the Salmonella load of hard red spring (HRS) wheat grains during tempering. Effective treatments were then evaluated for their effects on wheat flour quality. Tempering with sodium bisulfate (SBS), lactic acid (LA), and citric acid (CA) at 15% w/v alone reduced (p < 0.001) wheat Salmonella load by 3.15, 3.23, and 2.91 log CFU/g, respectively. Heat treatment (55 °C) reduced (p < 0.001) wheat Salmonellaload by 4.1 log CFU/g after 24 h of tempering. Combining both tempering and heat treatments resulted in a greater reduction in Salmonella load as non-detectable levels (<2 log CFU/g) of Salmonella in the wheat grains were obtained after 12 h of tempering with LA (15%) + heat. A similar result were achieved for both SBS (15%) + heat and CA (15%) + heat treatments after 18 h of tempering. Applying the combined treatments in HRS wheat grains resulted in comparable wheat flour baking (volume, texture, and crumb structure) and physicochemical properties (rheology and composition) relative to the control (tempering with water alone). The results from this study has the potential to be utilized for developing more effective methods for improving the food safety of wheat flour against Salmonella contamination.


Assuntos
Farinha , Água , Triticum , Temperatura Alta , Microbiologia de Alimentos , Salmonella , Ácidos
17.
J Food Sci ; 89(1): 460-472, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051009

RESUMO

This research performed the process optimization of wheat flour crisp puffing by radio frequency (RF) and investigated the accompanying property changes of starch. Experiments were performed in a 6 kW, 27.12 MHz pilot-scale RF system. The results showed that the volume expansion was highest (220%) when the conditions were employed as follows: electrode gap (115 mm); height of the sample (55 mm); initial moisture content of the sample (30%). Under these conditions, the samples were puffed at 120 s by RF, and changes in the starch properties were further observed. The results showed that the structure of the starch was destroyed, changing from oval and spherical in shape to fragmented. The crystal type of the starch changed from A to A + V types. Its crystal order was reduced, and the Fourier-infrared spectrum showed that the ratio of (1048/1022) cm-1 decreased from 1.142 to 1.047. The crystallinity decreased from 48.27% to 17.57%. These changes will help starch digestion and absorption in human body. These results indicated that RF puffing could become a potential development method for puffed snacks. PRACTICAL APPLICATION: In this study, the processes of radio frequency puffing wheat flour chips were optimized, and the changes of starch properties during puffing were studied. Therefore, this research provided a theoretical basis for the industrial application of radio frequency puffing.


Assuntos
Farinha , Amido , Humanos , Amido/química , Triticum/química , Fenômenos Químicos , Ondas de Rádio
18.
J Sci Food Agric ; 104(3): 1732-1740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851761

RESUMO

BACKGROUND: Mealworm (Tenebrio molitor) larvae are nutritious edible insects and exhibit the potential to act as protein substitutes in food products. In this study, we added mealworm powder as a substitute to medium-gluten wheat and whole wheat flours to enhance the quality of baked products. We compared the pasting, farinograph and extensograph properties of medium-gluten wheat and whole wheat flours replaced with different concentrations of mealworm powder to explore the interactions between flour and mealworm powder. RESULTS: Mealworm powder changed the pasting characteristics of medium-gluten wheat and whole wheat flours. After adding 20% mealworm powder, the pasting temperature of the medium-gluten wheat flour remained unchanged (approximately 89.9 °C), while the pasting temperature of whole wheat flour increased from 88.83 to 90.27 °C. Water absorption of medium-gluten and whole wheat flours exhibited a decreasing trend with increasing mealworm powder concentrations. Mealworm powder substitution resulted in stronger medium-gluten dough but exerted an opposite effect on the farinograph properties of whole wheat dough. Mealworm powder substitution decreased the stretching resistance of medium-gluten dough but increased that of whole wheat dough. With an increase in the concentration of mealworm powder, the specific volume of medium-gluten wheat steamed bread significantly increased from 1.69 mL g-1 (M0) to 3.31 mL g-1 (M10) whereas that of whole wheat steamed bread increased from 1.64 mL g-1 (M0) to 2.34 mL g-1 (M15). The addition of mealworm powder increased the protein, dietary fiber, lipid and sodium contents of steamed bread samples. CONCLUSIONS: This study provides a reference for the rheological properties of medium-gluten wheat and whole wheat flours substituted with mealworm powder and supports the addition of insects as a protein source in food products. © 2023 Society of Chemical Industry.


Assuntos
Glutens , Tenebrio , Animais , Glutens/química , Farinha/análise , Triticum/química , Pós , Pão/análise , Vapor , China
19.
J Sci Food Agric ; 104(4): 1928-1941, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37932850

RESUMO

BACKGROUND: The increased demand for healthy and standardized bread has led to a demand for an efficient and promising dough improver, of natural origin, to reduce the deterioration of whole wheat bread baked from frozen dough caused by the high levels of dietary fiber and by freezing treatment. In this study, the combined effects of xylanase (XYL), lipase (LIP), and xanthan gum (XAN) on the quality attributes and functional properties of whole wheat bread baked from frozen dough were evaluated. RESULTS: The optimal combination, which contained XYL (0.12 g kg-1 ), LIP (0.25 g kg-1 ), and XAN (3.1 g kg-1 ), was obtained using response surface methodology (RSM). The addition of the optimal combination endowed frozen dough bread with a higher specific volume, softer texture, better brown crumb color, and greater overall acceptability. The optimal combination had no adverse impact on the volatile organic compounds (VOCs) of frozen dough bread. In terms of the functional properties of bread, the water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SWC) of dietary fiber in frozen dough bread decreased in the presence of the optimal combination, whereas the glucose adsorption capacity (GAC) did not affect them. Correspondingly, the in vitro digestive glucose release was not significantly different between the control group and the optimal combination group after frozen storage. CONCLUSION: The optimal combination could improve the quality attributes and functional properties of whole wheat bread baked from frozen dough effectively, thereby increasing consumption. © 2023 Society of Chemical Industry.


Assuntos
Pão , Triticum , Triticum/química , Congelamento , Fibras na Dieta , Coloides , Glucose , Farinha
20.
Food Chem X ; 20: 100994, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144778

RESUMO

Bioavailability plays a key role for flavonoids to exert their bioactivities. This study investigated the transmembrane transport behavior and structure-activity of dietary flavonoids. Results showed that the apparent permeability coefficients of some flavonoids could be significantly increased when digestion products from rice flour (RD) or wheat flour (WD) are present (p < 0.05), especially in the WD, potentially due to higher reducing sugar (p < 0.05). 3D-QSAR revealed that the hydrogen bond acceptor groups at positions 5 and 6 of ring A, small-volume groups at position 3', hydrophobic groups at position 4', and large-volume groups at position 5' of ring B increased the transmembrane transport of flavonoids in the WD. A hydrogen bond donor group at position 4' of ring B enhanced the transmembrane transport of flavonoid compounds in the RD. These findings contribute to our comprehensive understanding of flavonoid absorption within the context of intestinal carbohydrate digestion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...